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Abstract—Scalar multiplication, the main operation in elliptic
curve cryptographic protocols, is vulnerable to side-channel
(SCA) and fault injection (FA) attacks. An efficient countermea-
sure for scalar multiplication can be provided by using alternative
number systems like the Residue Number System (RNS). In RNS,
a number is represented as a set of smaller numbers, where each
one is the result of the modular reduction with a given moduli
basis. Under certain requirements, a number can be uniquely
transformed from the integers to the RNS domain (and vice
versa) and all arithmetic operations can be performed in RNS.
This representation provides an inherent SCA and FA resistance
to many attacks and can be further enhanced by RNS arithmetic
manipulation or more traditional algorithmic countermeasures.
In this paper, extending our previous work, we explore the
potentials of RNS as an SCA and FA countermeasure and provide
an description of RNS based SCA and FA resistance means. We
propose a secure and efficient Montgomery Power Ladder based
scalar multiplication algorithm on RNS and discuss its SCA-
FA resistance. The proposed algorithm is implemented on an
ARM Cortex A7 processor and its SCA-FA resistance is evaluated
by collecting preliminary leakage trace results that validate our
initial assumptions.

I. INTRODUCTION

RNS is an arithmetic representation of integer numbers that
is advantageous when it comes to parallel arithmetic calcula-
tions. The system can also be used to represent elements of
cyclic groups or finite fields. In RNS, a number is represented
by a given moduli base (RNS base) consisting of several base
elements. The fact that each modulo of a number can be
processed in parallel (for any type of operation) as well as the
fact that a single bit fault in a moduli can lead to ”difficult to
trace” changes in an overall number, hints that there is fertile
ground for introducing RNS related Side Channel Attack
(SCA) and Fault injection Attack (FA) countermeasures in
cryptosystems [2] [4] [14] [18] [9] [10].

Scalar multiplication, the key operation behind Elliptic
Curve Cryptography (ECC), relies heavily on finite field to
perform all arithmetic operations. Thus, the introduction of
RNS as the number system for elements and their op-
erations can be a step towards increasing SCA/FA resistance.
However, this does not constitute enough protection against
SCAs/FAs nor does it guarantee efficient implementations.

Several researchers have made observations about the po-
tentials of RNS as a side-channel attack countermeasure as

well as a fault injection attack countermeasure. Bajard et
al. in [2] proposes, originally for modular exponentiation, a
random permutation of the moduli bases. The periodic change
using base permutation during the modular exponentiation
(and consecutively scalar multiplication) computation flow can
introduce enough randomness to thwart SCAs. This approach
leads to a leak resistant arithmetic (LRA) technique that can be
applied to modular exponentiation designs (used for RSA) in
two ways, either by choosing a new base permutation once at
the beginning of each modular exponentiation or by changing
a permutation in each modular multiplication operation of the
exponentiation process [10].

In this paper, we explore the RNS potentials in elliptic curve
scalar multiplication, extending the work done in [10], taking
into account both aspects of security (SCA/FA resistance)
and efficiency. The various ways of transformation from RNS
arithmetic to binary are explored as well as the way of
performing RNS modular multiplication. The RNS version of
the Montgomery modular multiplication algorithm is described
and its importance as the basis of both efficient and secure
RNS scalar multiplication implementation is described. We
present the current approaches on designing RNS Montgomery
multiplication and argue that the algorithm can be used as a
basis for SCA/FA resistance in scalar multiplication. To justify
the above argument, a variation of a scalar multiplication
algorithm is described that offers SCA/FA resistance through
the combination of RNS characteristics and traditional scalar
multiplication algorithmic countermeasures like the Mont-
gomery Power Ladder. The RNS based resistance of our
approach adopts the random permutation of the RNS bases
in each scalar multiplication algorithmic round, thus adapting
the LRA technique for scalar multiplication and modifying
it in order to achieve efficiency yet retain the disassociation
of secret information from physical leakage. Furthermore, in
our approach we take advantage of the base extension oper-
ation that is performed during an RNS Montgomery modular
multiplication in order to enhance fault detection. To verify
the correctness of our approach and to test its security and
efficiency, we implemented the described scalar multiplication
algorithm in the ARM Cortex A7 processor of a Raspberry Pi
2 using GMP C library as a basis for all arithmetic operations.

The rest of the paper is organized as follows. In section II



the RNS arithmetic for ECC is presented. Section III presents
the employed algorithm and argues over its SCA/FA resis-
tance. Details of our implementation are included in section
IV with some preliminary results of our SCA/FA analysis.
Finally, section V concludes the paper.

II. RNS FOR EC POINT OPERATIONS

A number can be represented in RNS as a set of
moduli ( ) of a given RNS
basis as long as where

is the RNS dynamic range and all are pair-
wise relatively prime. Each can be derived from by calcu-
lating . Assuming that we have two
numbers and represented in RNS as and

we can obtain addition, subtraction and mul-
tiplication in RNS as
where . Exact division by coprime with
is equivalent to multiplying by the inverse . Since
RNS is a non-positional representation, comparisons, divisions
and modular reductions are complex operations, which are
performed either by converting the number from RNS to
binary representation or by using base extension algorithms.

Binary reconstruction from RNS representation can be
done using the Chinese Remainder Theorem (CRT)

where and
is the multiplicative inverse of . The required modulo
reduction, due to the high bit length of , is not efficiently
realized and is usually performed by introducing a correction
factor , where .
To avoid the above process, ’s Mixed Radix System (MRS)
representation can be used for RNS to
binary conversion. The MRS number can be obtained
from by executing the Mixed Radix
Conversion (MRC) algorithm of (1).

(1)

where is the multiplicative inverse of modulo i.e.
. From the MRS number representation,

an integer can be recovered by performing
where .

For ECC approved ECs defined over (EC on
are not discussed in this paper), all op-

erations (addition, subtraction, multiplication) are modular
operations. Performing RNS addition or subtraction
can be easily realized by expressing in RNS format i.e.

and calculating:

(2)

However, RNS modular multiplication over is a
computationally difficult operation. It is usually realized
through the RNS Montgomery multiplication algorithm that
avoids modular inversions, but includes base extension opera-
tions [3] [10].

A. RNS Base Extension

Assuming that we introduce two RNS bases
and such

that for all and ,
we express a GF(p) number in base or as and

respectively while in both RNS bases as . We define
as , also, and

as the multiplicative inverse of in base as well as
and as the multiplicative inverse

of in base . The RNS Montgomery multiplication
(RNSMM) is presented as Algorithm 1 and as an outcome cal-
culates and .
Base extension from one base to the other in Algorithm 1 is
needed since does not exist in base and therefore
computations must be migrated to the base to come up
with .

(3)

Algorithm 1. RNS Montgomery Modular Multiplication

Input:

, ,

Output: and

1.

i.e. in base and in base

2. i.e. in

3. Base extension
4.
5.

6. Base extension
Return and

Two main approaches to base extension are used in practice
for RNS arithmetic: the MRS system and the Cox-Rower
architecture introduced in [16]. The Cox-Rower architecture
consists of parallel arithmetic units, the Rowers, which per-
form the independant computations for each base concurrently,
and the Cox unit dedicated to the computation of an approx-
imation of the factor . Therefore, it can be efficiently im-
plemented in hardware. An interesting work in protecting the
Cox-Rower architecture against multi-fault attacks is presented
in [1].

The MRS system is often used for RNSMM base extension,
despite the fact that it is sequential and therefore slower



compared to Cox-Rower. As a first step of MRS, the base
RNS number is converted into a base MRS number

following (1). In the second step, the base MRS number
is converted into a base RNS number according to (3).
A similar two step procedure is followed for base extension
from to respectively.

It must be noted that each RNS number A used in Mont-
gomery multiplication must be represented in the Montgomery
format, meaning in the form or

. To transform a number in the Montgomery
normalized form, an RNSMM must be performed between
A and using the bases and in re-
verse order (i.e. ). To
leave the Montgomery domain we must perform an RNSMM
of the Montgomery formatted RNS number A with 1 (i.e.

).
Efficient base extension operation heavily relies on the

choice of and . To increase computation efficiency,
the bases’ moduli must be chosen so that their multiplicative
inverses are small numbers. Most studies on optimal base
moduli [7] [5] agree that moduli of the form ,
or , , (Mersenne numbers) for
various values provide good performance results. Each base’s
moduli ( ) number must also be optimally determined as well
as each moduli’s value (defining all involved values bit
length). Usually, such numbers are specified according to the
GF(p) defining the EC. The RNS bases and dynamic
range must be close to ( ). Recent results from
Bigou and Tisserand in [6] show how to perform RNS modular
multiplication with a single base bit width instead of a double
one, which results in two times faster implementation for the
same area.

B. Using RNS for SCA and FA resistance

Several researchers have pointed out the potentials of RNS
as a side-channel and fault injection attack countermeasures.
Bajard et al. in [2] proposes, originally for modular expo-
nentiation, a random permutation of the base and

moduli thus creating random permutations of and

. We denote each such RNS Base permutation as
and . The periodic change of a base permutation during
the modular exponentiation (and consecutively scalar multi-
plication)computation flow , as presented in Figure 1, can
introduce enough randomness to thwart SCAs. This approach
leads to a leak resistant arithmetic (LRA) technique that can be
applied to modular exponentiation designs (used for RSA) in
two ways, either by choosing a new base permutation once at
the beginning of each modular exponentiation or by changing a
permutation in each RNSMM operation of the exponentiation
process. The base transition of an RNS number A represented
in a base permutation to a new permutation can be done
by performing two consecutive RNSMMs. Initially

1 is performed

1Note that A has the form (Montgomery form) since
it is an output of some previous RNSMM

and it is followed by

Fig. 1. Leak Resistant Arithmetic approach on Base Randomization

Applying the LRA technique in scalar multiplication follows
a similar approach to modular exponentiation. Some attempts
to introduce LRA in scalar multiplication have been made
in [14] [13], however, they are applicable only to the CRT
type of base extension using the Cow-Rower method when
pseudo-Mersenne numbers are used for base moduli. In scalar
multiplication, a permutation transition can be done only once
(per scalar multiplication), in every round of the scalar mul-
tiplication process or before every RNSMM operation
of every point operation of every round. Taking into account
that the transition from one permutation to another costs 2
RNSMM, the third approach is not affordable in terms of
speed. The first approach, providing a single randomization
per scalar multiplication may be vulnerable to horizontal SCA
attacks (depending on the employed implementation method-
ology) so of special interest is the second approach were
the RNS bases are permuted once per scalar multiplication
round. This approach offers a promising balance between
performance and SCA resistance strength.

RNS has a long history as fault tolerance and detection
tool and thus can be used for identifying possible FAs. Fault
detection through RNS is achieved by introducing redundancy
during RNSMM as described in [4] [17]. In the existing two
RNS bases moduli and used in RNSMM, a redundant
moduli is added. Thus the RNSMM algorithm is executed
using redundant bases and . Key point in
the detection process is base extension of the RNS values
during RNSMM from base to instead of
(in step 3 of Algorithm 1) as well as base extension from
to (in step 6 of Algorithm 1). The redundant RNSMM
algorithm results and include moduli related

to base element i.e. and . If

no fault is injected during an RNSMM then the 2 moduli must
be the same. This approach is capable of detecting a single
fault during a RNSMM and its main additional performance
cost (compared to the original RNSMM) is associated with
the RNS Base extension operations. A similar fault detection
technique was proposed in [14] but is applicable only to Cox
Rower RNSMM designs (that use the CRT base extension
method) while the technique described here and proposed in



[4] [10] is generic and can be applied to any base extension
methodology.

III. FA AND PA RESISTANT SCALAR MULTIPLICATION

Given the description of RNS PA and FA countermeasures,
we adopt the inclusion of LRA as an add-on countermeasure
in an PA resistant SM algorithm in order to provide horizontal
and vertical attacks resistance. In the described algorithm
(Algorithm 2), LRA is combined with the base point blinding
technique (additive randomization of the EC base point ) in
the Montgomery Power Ladder (MPL) algorithm expanding
the work of [11] [9] and [10]. MPL is considered secure
against most vertical and horizontal attacks.

In Algorithm 2, we introduce LRA RNS base randomization
once in each SM round (steps 4c and 4d) and in that way
manage to include a different randomization element in every
round. The input point is initially blinded by adding to it a
random element , thus preventing sophisticated, comparative
simple PAs [8]. MPL is a highly regular SM algorithm since
it always performs two point operations per round, regardless
of the scalar bit . It also provides an intrinsic fault detection
mechanism based on the mathematical coherence of and

. As observed in [15] and by Giraud in [12], the and
points in an MPL round always satisfy the equation

. Injecting a fault during computation in an or
variable will ruin this coherence and by introducing an

MPL coherence detection mechanism in the end of the MPL
algorithm, this fault will always be detected. This technique
is adopted in step 6 of Algorithm 1 where if
a fault is injected. Note that the correct result is unblinded
only after the fault detection mechanism, in order to provide
protection against possible bypassing (by injecting a second
fault) of the fault detection countermeasure.

Algorithm 2. LRA PA-FA Blinded MPL algorithm
Input: EC base point , random point ,

1. Choose random initial base permutation . Transform V, R to RNS format
using permutation
2. , ,
3.
4. For to

(a) , always performed in initial permutation
(b) choose a random base permutation
(c)
(d)
(e) if

and in permutation
else

and in permutation
end if

5.
6. If ( and are not modified and )

then
(a)
(b) return

else return error

All EC points in Algorithm 2 are represented in projective
coordinates. Conversion to Montgomery Format (CMF) oper-
ation is used for transforming all EC point coordinates into

the Montgomery format, so that RNSMM can be performed
correctly. This conversion will require 6 RNSMMs. The RBP
function performs base transformation from base permutation

to permutation and requires 6 RNSMMs. The RBP
function is executed in each MPL round once for point
and once for . As it can be observed from Algorithm 2,
we do not perform RBP for the point doubling since this
operation already includes computations only of a random
point (it remains random during the whole scalar multipli-
cation without any interference). Note that computations
retain the same base permutation in all MPL rounds since

point doubling involves only the random EC point (no
need to re-randomize it through RBP). However, since is
used in the fault detection mechanism and is needed for
unblinding the correct result, after the last MPL round, there
is a base transformation from the initial permutation to the
last round’s permutation for and there is also a base
transformation from the last round’s permutation to the
initial permutation that is done after passing successful fault
detection.

IV. IMPLEMENTATION

In order to implement the above algorithms, a consistent
realization process was followed, based on two steps. Taking
into account that a considerable number of parameters are
constant for all scalar multiplication operations on a specific
EC (they are related to the Bases’ moduli , the moduli
number and the value of the GF(p) field defining the
EC), these values can be precomputed and stored in memory
units so as to be used repeatedly for all scalar multiplications.
Therefore, as a first step of realizing the proposed approach,
an appropriate design methodology needs to be conceived in
order to precompute and store the above mentioned values in
memory space with efficiency. This step needs to be executed
only once for all EC computations, so it can be considered as
an initialization step. The second step in the previous sections’
algorithm realization is the actual scalar multiplication design
that needs to use the precomputation structure realized in the
first step. To provide precomputations for all possible bases
moduli combinations (realizing the base permutation ), a
numeric index (denoted as permutation index) is assigned
to each such combination and a structure is associated to
this index. This permutation structure includes the following
information:

The permutation index
The moduli that constitute base
The moduli that constitute base
The current Base dynamic range

There exist different permutation structures that are
stored in array form.

As an outcome of the first step, an entry is created as a
memory structure for each moduli of the 2 RNS Bases (needed
in the RNSMM algorithm). Such information (for a single
entry ) are the following:

the moduli value



TABLE I
EDWARDS CURVE ( ) CASE STUDY EMPLOYED 8 BASE

MODULI

the value
the value
A matrix of elements calculating for all

A matrix of elements calculating for

all
As a proof-of-concept implementation of the above de-

scribed two step design process, appropriate software code
was written for ARM cortex A class processors (having a
Raspberry Pi 2 as a reference design) using the GMP library
for all operations. As a case study, was used
for an Edwards based Elliptic Curve (with and )
defined over GF(p) where (NIST prime
field). The employed case study moduli are presented in Table
I.

Since there exist different base permutations
which as an individual SCA countermeasure, introduce small
randomization. However, since this randomization is combined
with the base point blinding technique, the overall randomiza-
tion of the implementation leakage trace is adequate to provide
side-channel attack resistance. This can be observed from the
collected traces using Electromagnetic Emission probes from
the Raspberry Pi’s processor during the implemented scalar
multiplication execution. More precisely, our experimental
setup is the following:

Raspberry Pi 2 Model 8 with a 900MHz quad-core Cortex
A7 processor.
EMV Langer probe RF-U 5-2.
Lecroy Waverunner 610Zi samping at 25MS/sec.

The traces are presented in Figure 2. As a preliminary
analysis, we obtained traces with different random points and
we observed the same patterns. High regularity in the leakage
traces prohibits simple side-channel attacks. A more detailed
analysis of the leakage traces containing several statistical tests
and profiling of the device will be performed, in order to
evaluate completely our implementation.

V. CONCLUSIONS

This paper presented a highly regular implementation of
RNS scalar multiplication algorithm. Our combined counter-
measure consisting of randomization of the EC base point and
random permutation of the base moduli should provide resis-
tance against the most common PA and FA attacks. Indeed,
a preliminary analysis of our traces shows high regularity in
the leakage traces. As future work, we plan to evaluate our
algorithm in more sophisticated attack scenarios, in order to
prove in practice our theoretical security analysis.

Fig. 2. proposed Scalar Multiplication EM leakage trace on Raspberry Pi 2
ARM processor
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